超導量子電腦-硬體技術與廠商指引(2025)


Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s

,個別量子位元的操作、量子位元間的連接性


Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s


Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s


Ref: doi.org/10.1007/s10948-021-06104-5


Ref: doi.org/10.1038/s41467-022-34727-2
Engineering superconducting qubits to reduce quasiparticles and charge noise


Floating Qubit


doi.org/10.1038/s41467-024-48230-3
Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms


Floating Qubit


doi.org/10.1038/s41467-024-48230-3
Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms


Floating Qubit


doi.org/10.1038/s41467-023-39249-z
Quantum bath suppression in a superconducting circuit by immersion cooling



doi.org/10.1038/s41467-023-39682-0
Phononic bath engineering of a superconducting qubit


Phononic bath engineering of a superconducting qubit 探討了將超導量子位元耦合到聲學表面波(SAW


10.1038/s41598-024-57248-y
Wiring surface loss of a superconducting transmon qubit



Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer
DOI: 10.1103/PhysRevApplied.11.044092



Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States
DOI: 10.1103/PhysRevApplied.17.014024





Schematic representation of different QPU topologies. (Top-left: IonQ, Top-center: OXC, Bottom-left: Rigetti, Right: IBM). Images compiled from AWS Braket and IBM Quantum Experience sites.



The IQM Star architecture connects all qubits through a central resonator, enabling effective all-to-all connectivity, which improves error resilience and algorithm efficiency.

補上的項目 (Additional Items) 20250620-12.png


Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
DOI: 10.1038/s41534-019-0185-4


20250620-13.png


Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
DOI: 10.1038/s41534-019-0185-4


20250620-15.png


Decay-protected superconducting qubit with fast control enabled by integrated onchip filters
DOI: 10.1038/s42005-024-01733-3


20250620-16.png


On-premises superconducting quantum computer for education and research
DOI: 10.1140/epjqt/s40507-024-00243-z


Resonance-24Qubit_Blog.jpg


Ref: https://meetiqm.com/blog/jumping-off-the-grid-in-quantum-processor-innovation-introducing-iqm-star/

20250620-20.png


Ref: IQM Blog - Jumping off the grid in quantum processor innovation


IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)


20250620-21.png


IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)


20250620-22.png


IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)


20250620-23.png


IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)


20250620-24.png


Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit
DOI: 10.1038/s41467-019-10798-6


medium (1).png 20250620-18.png


Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
DOI: 10.1103/PhysRevLett.111.080502


20250620-25.png


Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9


20260620-26.png


Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9


20260620-27.png


Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9


20260620-28.png


Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9


20260620-07.png Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer DOI: 10.1103/PhysRevApplied.11.044092 20250620-08.png Modular superconducting-qubit architecture with a multichip tunable coupler DOI: 10.1103/PhysRevApplied.21.054063 20250620-09.png Modular superconducting-qubit architecture with a multichip tunable coupler DOI: 10.1103/PhysRevApplied.21.054063 20250620-10.png Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit DOI: 10.1103/PhysRevApplied.12.054023 20250620-11.png 10.1038/s41534-019-0185-4 Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits 20250620-12.png 10.1038/s41534-019-0185-4 Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits 20250620-13.png 10.1038/s41534-019-0185-4 Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits 20250620-14.png Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States DOI: 10.1103/PhysRevApplied.17.014024 20250620-15.png 10.1038/s42005-024-01733-3 Decay-protected superconducting qubit with fast control enabled by integrated onchip filters 20250620-17.png 10.1140/epjqt/s40507-024-00243-z On-premises superconducting quantum computer for education and research 20250620-16.png 10.1140/epjqt/s40507-024-00243-z On-premises superconducting quantum computer for education and research Resonance-54Qubit_Blog.jpg Ref:https://meetiqm.com/blog/jumping-off-the-grid-in-quantum-processor-innovation-introducing-iqm-star/ Resonance-24Qubit_Blog.jpg Ref:https://meetiqm.com/blog/jumping-off-the-grid-in-quantum-processor-innovation-introducing-iqm-star/ Picture2-5.webp Images compiled from AWS Braket and IBM Quantum Experience sites. Fig. 2. Schematic representation of different QPU topologies. The top left corner shows the all-to-all connectivity of the 11-qubit trapped ion system by IonQ, demonstrating the fully connected nature of this technology. The other circuits are representatives of superconducting QPUs available on the cloud, the top central schematic of the octagonal configuration of the 8-qubit QPU Lucy from OXC, the bottom left figure is also based on octagonal configuration (Rigetti) but with octagon vertices linked through three neighbor links, the largest offering currently accessible through AWS bracket is an 80-qubit system. The schematic on the right shows a typical superconducting layout of IBMs superconducting processor. At the time of compiling this report, IBM hold the record of largest superconducting QPU with 127 qubits. 20250620-20.png IQM crystal, 5Q, 20Q, 54Q, 150Q https://cdn.prod.website-files.com/6523f13a748909d3e1bbb657/66840c982cc873f725237cbc_IQM%20Garnet%2020Q%20Whitepaper%202024%20sm.pdf Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer.pdf 20250620-23.png IQM crystal, 5Q, 20Q, 54Q, 150Q https://cdn.prod.website-files.com/6523f13a748909d3e1bbb657/66840c982cc873f725237cbc_IQM%20Garnet%2020Q%20Whitepaper%202024%20sm.pdf Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer.pdf 20250620-22.png IQM crystal, 5Q, 20Q, 54Q, 150Q https://cdn.prod.website-files.com/6523f13a748909d3e1bbb657/66840c982cc873f725237cbc_IQM%20Garnet%2020Q%20Whitepaper%202024%20sm.pdf Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer.pdf 20250620-21.png IQM crystal, 5Q, 20Q, 54Q, 150Q https://cdn.prod.website-files.com/6523f13a748909d3e1bbb657/66840c982cc873f725237cbc_IQM%20Garnet%2020Q%20Whitepaper%202024%20sm.pdf Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer.pdf 20250620-24.png 10.1038/s41467-019-10798-6 Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit 20250620-19.png The IQM Star addresses a lot of these issues. It effectively connects all qubits through a resonator, which is rare in superconducting technology. This resonator acts as a computational element, enabling direct, high-fidelity interactions between all qubits. A Departure from Tradition: How IQM Star Stands Apart Effective all-to-all connectivity: Any qubit can interact with any other qubit, eliminating the need for noisy SWAP gates. Improved error resilience: The shared resonator allows for more efficient quantum error detection and correction. Efficient quantum algorithm execution: Algorithms that require high qubit connectivity, such as quantum simulations and variational quantum eigensolvers (VQEs), can run more efficiently. medium (1).png 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit 10.1103/PhysRevLett.119.180511 20250620-18.png Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits 10.1103/PhysRevLett.111.080502 20260620-28.png 10.1007/s11432-020-2881-9 Superconducting quantum computing: a review 31.Superconductingquantumcomputing_areview.pdf 20260620-27.png 10.1007/s11432-020-2881-9 Superconducting quantum computing: a review 31.Superconductingquantumcomputing_areview.pdf 20260620-26.png 10.1007/s11432-020-2881-9 Superconducting quantum computing: a review 31.Superconductingquantumcomputing_areview.pdf 20250620-25.png 10.1007/s11432-020-2881-9 Superconducting quantum computing: a review 31.Superconductingquantumcomputing_areview.pdf
  • 基本元件: gate line、readout line、flux bias line、resonator
  • 構成: qubit 多採 XY gate + Z gate 線控制,resonator 作為 readout 或耦合中介
  • 尺寸考量: qubit 約 100 µm,resonator(6 GHz)約 4 mm




2. 低溫操作條件

  • 使用 dilution fridge 降至 0.02 K 以下,抑制黑體輻射
  • 操作頻率須滿足 GHz ≫ kT 條件,常見為 5–7 GHz
  • 超導 gap Δ ≈ 1.76 Tc

3. Qubit 頻率設計:IBM vs Google

  • IBM: fixed-frequency SQUID,穩定但難調控
  • Google: tunable-frequency SQUID,可調但易受 flux noise 影響

4. Crosstalk 串音問題與解法

  • Classical crosstalk: gate 線之 signal 串擾
  • Quantum crosstalk: readout 或 flux 線干擾 nearby qubit
  • 解法: 拉距離、隔離接地、加 shielding/filter、設計雙層佈線

5. Tunable Coupler 與 Parasitic 元件

  • 可調耦合器支援關閉 qubit 間 interaction(gate on-demand)
  • parasitic element(雜散電容/電感)會造成殘餘耦合
  • 避免共振腔載 photon 時未清空(需 reset)

6. 回流電流與 Residual 耦合問題

  • flux 控制電流回流路徑造成非預期耦合
  • 設計 qubit array 時避免產生意外 residual interaction
  • tunable coupler 可有效 suppress 不必要耦合

7. Gate Propagation 與 off-resonance 操作

  • off-resonance 控制方式可透過 detuning 處理
  • 操作時需規劃 gate 的時間排列以避免重疊(propagate diagram)

8. 模擬 Hamiltonian 與分解策略

  • 量子模擬關鍵為實現 e-iHt
  • 使用 Suzuki-Trotter 或變分方式分解為 gate
  • Free evolution 中的 undesired coupling 需插入 cancel 序列(如 echo、Z gate)