超導量子電腦-硬體技術與廠商指引(2025)
▲
Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s
▲
Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s
▲
Ref: 如何打造一台量子電腦 (中央研究院物理研究所/陳啟東研究員) https://www.youtube.com/watch?v=wceckog180U&t=3420s
▲
Ref: doi.org/10.1007/s10948-021-06104-5
▲
Ref: doi.org/10.1038/s41467-022-34727-2
Engineering superconducting qubits to reduce quasiparticles and charge noise
Floating Qubit
▲
doi.org/10.1038/s41467-024-48230-3
Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms
Floating Qubit
▲
doi.org/10.1038/s41467-024-48230-3
Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms
Floating Qubit
▲
doi.org/10.1038/s41467-023-39249-z
Quantum bath suppression in a superconducting circuit by immersion cooling
▲
doi.org/10.1038/s41467-023-39682-0
Phononic bath engineering of a
superconducting qubit
Phononic bath engineering of a superconducting qubit 探討了將超導量子位元耦合到聲學表面波(SAW
▲
10.1038/s41598-024-57248-y
Wiring surface loss of a superconducting transmon qubit
▲
Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer
DOI: 10.1103/PhysRevApplied.11.044092
▲
Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States
DOI: 10.1103/PhysRevApplied.17.014024
▲
Schematic representation of different QPU topologies. (Top-left: IonQ, Top-center: OXC, Bottom-left: Rigetti, Right: IBM). Images compiled from AWS Braket and IBM Quantum Experience sites.
▲
The IQM Star architecture connects all qubits through a central resonator, enabling effective all-to-all connectivity, which improves error resilience and algorithm efficiency.
▲
Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
DOI: 10.1038/s41534-019-0185-4
▲
Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
DOI: 10.1038/s41534-019-0185-4
▲
Decay-protected superconducting qubit with fast control enabled by integrated onchip filters
DOI: 10.1038/s42005-024-01733-3
▲
On-premises superconducting quantum computer for education and research
DOI: 10.1140/epjqt/s40507-024-00243-z
▲
Ref: https://meetiqm.com/blog/jumping-off-the-grid-in-quantum-processor-innovation-introducing-iqm-star/
▲
Ref: IQM Blog - Jumping off the grid in quantum processor innovation
▲
IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)
▲
IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)
▲
IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)
▲
IQM crystal, 5Q, 20Q, 54Q, 150Q
Ref: Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer (PDF)
▲
Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit
DOI: 10.1038/s41467-019-10798-6
▲
Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
DOI: 10.1103/PhysRevLett.111.080502
▲
Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9
▲
Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9
▲
Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9
▲
Superconducting quantum computing: a review
DOI: 10.1007/s11432-020-2881-9
- 基本元件: gate line、readout line、flux bias line、resonator
- 構成: qubit 多採 XY gate + Z gate 線控制,resonator 作為 readout 或耦合中介
- 尺寸考量: qubit 約 100 µm,resonator(6 GHz)約 4 mm
▲
2. 低溫操作條件
- 使用 dilution fridge 降至 0.02 K 以下,抑制黑體輻射
- 操作頻率須滿足 GHz ≫ kT 條件,常見為 5–7 GHz
- 超導 gap Δ ≈ 1.76 Tc
3. Qubit 頻率設計:IBM vs Google
- IBM: fixed-frequency SQUID,穩定但難調控
- Google: tunable-frequency SQUID,可調但易受 flux noise 影響
4. Crosstalk 串音問題與解法
- Classical crosstalk: gate 線之 signal 串擾
- Quantum crosstalk: readout 或 flux 線干擾 nearby qubit
- 解法: 拉距離、隔離接地、加 shielding/filter、設計雙層佈線
5. Tunable Coupler 與 Parasitic 元件
- 可調耦合器支援關閉 qubit 間 interaction(gate on-demand)
- parasitic element(雜散電容/電感)會造成殘餘耦合
- 避免共振腔載 photon 時未清空(需 reset)
6. 回流電流與 Residual 耦合問題
- flux 控制電流回流路徑造成非預期耦合
- 設計 qubit array 時避免產生意外 residual interaction
- tunable coupler 可有效 suppress 不必要耦合
7. Gate Propagation 與 off-resonance 操作
- off-resonance 控制方式可透過 detuning 處理
- 操作時需規劃 gate 的時間排列以避免重疊(propagate diagram)
8. 模擬 Hamiltonian 與分解策略
- 量子模擬關鍵為實現
e-iHt
- 使用 Suzuki-Trotter 或變分方式分解為 gate
- Free evolution 中的 undesired coupling 需插入 cancel 序列(如 echo、Z gate)
▲